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ABSORPTION AND EMISSION CHARACTERISTICS
OF DIFFUSE SPHERICAL ENCIOSURES

By E. M. Sparrow and V. K. Jonsson

SUMMARY

An analysis was made to determine the energy absorbed when radia-
tion from an external source enters a spherical cavity with diffusely
reflecting walls. It was found that both the overall energy absorbed in
the cavity and the local distribution of absorbed energy could be ex-
pressed in terms of simple algebraic equations that are valid for any
arbitrary spatial and directional distribution of the incoming radiation.
In addition, the characteristics of an isothermal spherical cavity as a
possible source of near black-body radiation were investigated. This
information was also expressed by simple algebraic relations.

INTRODUCTION

The thermal radiation characteristics of spherical cavities are of
practical lmportance in connection with the absorption of radiant energy
for both outer-space and terrestrial applications. For example, a study
of the relative merits of various absorber configurations for a space-
vehicle solar power system has shown the spherical cavity to be quite
attractive (ref. 1). In addition, spherical cavities are of potential
use as emitters of black-body radiation.

An analysis, described herein, was made to determine both the ab-
sorption and emission characteristics of spherical cavities, the surfaces
of which are diffuse reflectors and emitters (i.e., Lambert's cosine law
1s obeyed). The absorption analysis sought to provide the following in-
formationt Given the amount of radiant energy entering the cavity, what
fraction is ultimately absorbed within the cavity. It is shown that
this overall absorption result can be derived without approximation 1n
terms of a simple closed-form expression that is valid for any arbitrary
spatial and directional distribution of the incoming radiation. A sec=~
ond aim of the absorption analysis was to provide the local distribution
of absorbed energy as a function of surface locaticn within the cavity.



This local absorption information is also derived in terms of a simple
closed-form algebraic equation valid for any arbltrary distribution of
incoming radiation. These general propertles of the spherical cavity
appear not to have been reported by previous investigators.

The absorption problem 1s treated herein without recourse to the
emission problem. What was being sought was an effective (or apparent)
absorptivity that characterizes the combined behavicr of the cavity
geometry and its surface absorptivity. This effective absorptivity for
the cavity may be considered a property in the same sense as is the
surface absorptivity a property of a plane surface. The reemission of
radiant energy depends upon the particular thermal boundary condition
that 1s prescribed at the surface of the cavity (e.g., isothermal,
adlabatic, or uniform heat flux). The results derived herein for the
Jocal dilstribution of absorbed energy can be used as input data for
solving the reemission problem for any arbitrarily prescribed thermal
boundary conditlon. Thus, the results of this report are meant to have
general applicability extending beyond particular thermal boundary con-
ditions. 'The present analysis utilizes a temperature~independent sur-
face absorptivity that is defined as the fraction of the incoming energy
absorbed over the entire range of wavelengths. The gray-body assumption
need not be made. The results can equally well be used on a monochro-
matic basis and then lntegrated over all wavelengths.

The second part of this report is concerned with the emisslon char-
acteristics of isothermal spherical cavities. This study is motivated
by the possible utilization of such cavities as sources of black-body
energy. In such applications, care would be taken to ensure that the
energy level of any external radiation entering the cavity would be much
lower than the energy level of radiation emitted within the cavity. With
this in mind, external radiation is not included in the cavity-emission

analysis.

This research was sponsored by the Natlonal Aeronautics and Space
Administration through the Offlce of Grants and Research Contracts.

SYMBOLS

A surface area
A surface ares of cavity interior

B radiosity: radiant flux leaving surface element per unit time
and area
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rate of energy carried by incoming diffuse stream per unit area
of cavity opening

rate of energy carried by incoming parallel ray bundle per unit
area normal to ray

angle factor

incident energy per unit time and area
overall rate of energy absorption

overall rate of energy streaming from cavity
local rate of energy absorption per unit area
local rate of heat loss per unit area

radius of sphere

distance (fig. 2)

rate of incoming radiation

distribution of incoming radiation per unit surface area
absolute temperature

coordinates

surface absorptivity

apparent absorptivity

inclination angle of rays

emissivity

apparent emlssivity

coordinate angles

opening angle of cavity

Stefan~-Boltzmann constant



ANGLE FACTOR FOR DIFFUSE INTERCHANGE

As a basis for the analysis that follows, the angle factor for
diffuse interchange within a spherical cavity must be known. The angle
factor is the fraction of the radiant energy leaving one surface element
that is incident on some other surface element. The derivation of the
angle factor for two elements located on a spherical shell is based on
sketch (a). For radiant interchange between two diffuse infinitesimal

dAz

surface elements, the angle factor takes the following form (e.g., ref. 2):

cos ¥y €0s 1y
na?

Written in this way, the angle factor represents the fraction of the
radiant energy leaving dA, that reaches dAs. The distance as meas-

ured along the connecting line between dA; and dAp 1s denoted by d.
The angles 1y and yp are, respectively, formed by the normals to
dA; and dAp and the connecting line between the elements. From

sketeh (a) it is easily seen that

(a/2)

cos Tl = COS YZ = R

~ e~
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With this, equation (1) becomes
dAp
 4sR2

(2a)

dFq.-2

The remarkable aspect of this result is that the angle factor is 1n-~
dependent of the orientation and the position of the elements. This 1s
a unique property of the spherical cavity. With cognlzance of this
property taken, equation (2a) can be generalized to read

Ap
4R

where the surface elements 1 and 2 may be either finite or infinitesimal.

The findings of the previous paragraph easily show that radiation
which is diffusely emitted or reflected from & surface element will
reach every unit area of the spherical cavity in uniform amount. Thus,
if A* 1is the surface area of the cavity interior, the fraction

A*/4nR2 of the energy leaving an element will fall upon the surfaces
of the cavity and another fraction 1 - (A*/4nR2) will escape through

the opening.
ABSORPTION CHARACTERISTICS
Overall Energy Absorption

Consider radiation from an external source streaming into a spher-
ical enclosure, which is diagrammed in sketch (b). The radius of the

4




sphere 1s R, and the angle m* defines the opening of the cavity. The

angles ¢ sand 6 are, respectively, the polar and plane angles in a
standard set of spherical coordinates. The corresponding surface area
A* of the cavity interior is

A* = 2nR2(1 + cos @) (3)

The spatial and directional distribution of the incoming radiation may
be completely arbitrary, and the rate of incoming energy is denoted by
8 (e.g., Btu/nr).

Consideration of the incoming energy shows that upon first contact
with the surface an amount

Q‘l = aS (4&)

is absorbed, and (1 - a)S is reflected in all directions., Of this re-
flected energy, it follows, from*the foregoing discussion of angle fac-

tors, that an amount (1 - «)S remsains within the cavity and is

2
4nR
uniformly distributed over the surface. Of the reflected energy thus
incident on the surface, a fraction o 1s absorbed, that is,

Q= CLS[(l - a) Ly ] (4b)

4nR2

*
and another fraction (1 - a) Aﬁz is re-reflected and then returns to
45
the surface., Once again, a fraction « 1s absorbed, that is,

2
Qz = aS [(l - a) LY ] (4c)

4nR2

*
and another fraction (1 - a) A > reflects and returns to the surface.
47R

If account were kept of all the successive absorptions @Qs, the total
energy absorbed & could be determined by simply summing the separate
contributions as given by equations (4a), (4b), (4c), and so forth:

® * ¥ =2
Q = 2: Qi =aS<1+ (1 - a) Z%EE-F El - a) 42R2] + ... (5)
i=1

The series within the braces is a geometric progression and therefore
can be summed in closed form. Making use of thils sum and introducing

A* from equation (3) gilves

_ as
C=1T 0.5(1 - a)(1 + cos ¢*) (6)
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As a convenient representation of the overall absorption results,
there is introduced the apparent absorptivity, which i1s defined as

o = Total energy sbsorbed _ Q (7)
a = Total incoming energy S

Substituting for Q from equation (6) ylelds the expression for ag &s

%a T 1 -0.5(1 - a)(1 + cos ¢¥) (8)

The remarkable conclusion, which follows from this, is that the apparent
absorptivity is independent of the detailed manner in which the incoming
energy enters the enclosure; therefore, equation (8) applies in general.
The only parameters are the opening angle @* and the surface absorp-

tivity «.

The apparent absorptivity, as given by equation (8), is plotted in
figure 1 as a function of ¢ for parametric values of «a. Inspection
of the figure reveals that the apparent absorptivity of the cavity al-
ways exceeds the surface absorptivity «. This finding is related to
the additional opportunities for absorption that accompany the multi-
reflections within the cavity (the so-called "cavity effect"). The in-
crease of ag relative to a 1s greatest for surfaces of low absorp-
tivity and for cavities with small openings (i.e., small ¢ ). Even for
a moderately large opening angle such as 600, however, there is already
s substantial deviation between oy and a. For very small velues of
¢*, the apparent absorptivity is very close to unity regardless of the
actual surface absorptivity. ' '

Local Energy Absorption

Thus far consideration has been given to the absorption character-
istics of the enclosure as a whole. Now, attention will be directed to
the energy absorbed locally at various positions on the cavity wall.
The distribution of the incoming energy over the interior of the cavity
is represented by s(p,8) per unit surface area (e.g., Btu/(hr)(sq ft).
The relation between the local distribution s and the total rate of
incoming energy S 1is given by

an 14
S = f f s(p,6)R%sin ¢ dO dp (9)
8=0 “p=0

The radlant energy locally absorbed per unit time and area is denoted
by q.



From the first contact of the incoming radiation with the surface,
the energy locally absorbed per unit time and area is

q; = as (10a)

All subsequent absorptions of reflected and re-reflected radiation, how-
ever, take place uniformly at all locations in the enclosure. From all
absorptions following the first contact, therefore, the energy locally
absorbed per unit area is most simply obtained by subtracting oS from
Q (eq. (6)) and then dividing by the surface area A¥. From this it
follows that

a(l - a)(S/47R?)

- Qg5 = 10b
1-% 1-0.5(1 - a)(1 + cos ¢¥) (100)
Then, q 1s obtained by combining equations (10a) and (10b):
- 2
q=as + (1 - a)(S/4nR%) (11)

1-0.5(1 - a)(1 + cos o)

Equation (11) applies for any arbitrary surface distribution of incoming
radiation. The final explicit result for q 1is obtained by introducing
the particular distribution function s(9,8) that may be of interest.

Contrasting the simplicity of the local absorption result that has
Just been derived with what would be found for nonspherical configura-~
tions is interesting. 1In general, for other cavity shapes, solving an
integral equation to determine q would be necessary and, almost always,
numerical means would be required. In many situations, such solutions
would have to be carried out separately for each distribution function
s of interest. When cognizance of this is taken, the simplicity and
generality of equation (11) is clearly evident.

Applications of General Analysis

To illustrate the use of the foregoing analysis, application will
be made to two important limiting cases. The first is concerned with
incoming radiation traveling in a bundle of parallel rays, while the
second treats incoming radiation that is diffusely distributed over the
opening of the cavity.

Parallel rays. - Consider radiation arriving in & parallel-ray
bundle as illustrated in figure 2. The rays travel in the direction of
the positive x-axis and make an angle B with the vertical. The energy
carried by the ray bundle may be characterlzed by e, per unit area

IO T =T
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normal to the ray (e.g., Btu/(hr)(sq ft)). An obvious example would be
the solar constant. Because the area of a surface tightly stretched
across the opening of the spherical cavity is =(R sin @*)2 and the
projection of the rays along the normal to this surface is accomplished
by c¢os B, the total energy S entering the enclosure is

S = epnR%cos B sinZg* (12)

The overall rate of energy absorption in the cavity is S, where g
may be calculated from equation (8) or read from figure 1.

Next, the surface distribution of the incoming energy s(¢,0) may
be determined. Depending on the ineclination angle B and the opening
angle ¢¥, the incoming rays may be directly incident on only part of
the surface; the remaining portion recelves radiant energy because of
internal reflections alone. The portion that is directly irradiated may
be called the no-shadow region, while the portion recelving only re-
flected energy may be called the shadow region. In the no-shadow region,
the distribution function s (which is per unit surface area) may be
derived by projecting the incoming rays along the surface normal,

Writing expressions for unit vectors lying along the local surface normal
(i.e., the radius vector) and along the incoming rays and then taking the
scalar product shows that

s = ep(cos 6 sin @ sin B - cos @ cos B) (13a)
in the no-shadow region. In the shadow region,
s =0 (13b)

These expressions for s, along with equation (12) for S, may be uti-
lized in determining the local distribution of the absorbed energy &as
given by equation (11).

In order to render equations (13) fully useful, the boundary be-
tween the shadow and no-shadow regions must be determined. To illustrate
the method of analysis, consider the case where ¢¥ > 900, that is, a
spherical shell smaller than a hemisphere as pictured in figure 2, When
the inclination angle B < (@* - 90°), the incoming radiation will fall
directly on all parts of the surface (albeit nonuniformly). When
B > (w* -~ 90°), a shadow region coexits along with a region of direct
il1lumination. The coordinates of the boundary curve between the shadow
and no-shadow regions willl be found with the aid of figure 2. The upper
part of the figure is a plan view of the spherical shell showing radia-
tion arriving from the right. The lower part of the figure is an eleva=-
tion view cut through the spherical shell at a typical location y =
constant. In the lower part of figure 2, there 1s shown a limiting ray
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that grazes the rim of the shell and strikes the surface at a location
X,z3 this is the boundary point between the shadow and no-shadow regions.
From the geometry of the figure

x = -r cos(2p - &), z = -r sin(2B - E) (14a)

Also, it 1s easy to show that

r sin ¢ = -R cos OF, r cos £ = Vstinch* - y2 (14b)

The distance r and angle £ can be eliminated by combining equations
(142) and (14b), and this yields

L

x = R cos ¢¥sin 28 - \/stin2$* - y2 cos 2B

(15)

z —\/Rzéin2¢* - y2 sin 2B - R cos 9¥cos 2B
Equations (15) constitute a parametric representation of the boundary
curve between the shadow and no-shadow regions.

When o* < 90° (spherical shell larger than a hemisphere), the
boundary curve is also defined by limiting rays that graze the rim of
the cavity opening and intersect the shell. As illustrated on figure 3,
however, rays that graze at all points around the rim must be consldered.
From the rays that graze at the forward edge of the rim (toward the in-
coming rays), the x,z-coordinates of the shadow, no-shadow boundary re-
main as given by equations (15). From the rays that graze at the rear-
ward edge of the rim, the boundary curve 1ls found to be

R cos ¢¥sin 28 + YR%sinZg* - y2 cos 28

™
Ul

(16)

z

\/ﬁzsin2$* - y2 sin 2B - R cos ¢*cos 2B

To provide some feeling for the nature of the boundary curve, it 1is
useful to project it into the x,z- and x,y-planes. The projections
have the followlng equations:

x sin 2B - z cos 28 = R cos ¢*

* 1 2 2 (17)
(x - R cos @"sin 2B)° v -1

R%sin%p* cosfzp R%sinp”

These projections are, respectlvely, a straight line and an ellipse.
This indicates that the boundary curve cuts out a circle or a part of a
circle on the surface of the spherical shell.

229T-&
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To illustrate these results, figure 4 has been prepared to show
the projections of the boundary curve in plan and elevation views (x,y—
and x,z-planes, respectively). The left slde of the figure corresponds
to an enclosure where ¢* > 90°, Projections are shown for inclination
angles B < 45°, = 450, and > 45°. The right side corresponds to
o* < 900, and projections are shown for B < 45° and B = 45°, The
case of B > 45° wms not included in order to preserve clarity of the
figure.

Diffuse incoming radiation. - Diffuse radiant energy 1s consldered
uniformly distributed over the opening of the spherical cavity. The
energy carried by the diffuse stream may be characterized by ez per
unit area of the cavity opening. ZFor purposes of analysis and without
loss of generality, this energy may be regarded as coming from a black,
isothermal spherical cap of spherical radius R and emissive power eg,
which fits over the opening of the cavity. Thils arrangement is pictori-
ally illustrated in sketch (c). Such a spherical cap gives rise to a

Black isothermal radiating
surface

diffuse stream of radiation, uniformly distributed across the cavity
opening. Since a black surface is a diffuse emitter, radiant energy
coming from the spherical cap 1s uniformly distributed along the walls
of the cavity (see discussion following eq. (2b)). This same statement
also applies to any stream of incoming diffuse energy uniformly dis-
tributed across the cavity opening.
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The opening of the spherical cavity has an area (R sin $*)2 and,
therefore, the rate S at which radiant energy enters the cavity 1is

S = eqnR®sin* (18)

A fraction oy of this energy quantity is absorbed within the cavity.
Since the incoming radiation is uniformly distributed over the walls of
the cavity (area A*), the distribution function s 1s independent of
position and is equal to

g  0.5eq sinZg®
s =-x= s (19)
A 1+ cos o

Introducing these expressions into equation (11) gives the following re-
sult for the local rate of energy absorption q:

0.5 inZe* /(1 *
q - ey o sinfg*/(1 + cos @ ) (20)
1 -0.5(1 - a)(1 + cos ¢*)

Inspection of equation (20) reveals that q 1is uniform along the walls
of the cavity. This result may be contrasted with the findings for the
case of the parallel ray bundle, for which q 1s a function of position
for any inclination angle of the rays.

EMISSION CHARACTERISTICS

Consideration is now given to the emission characteristics of a
diffuse, isothermal, spherical cavity (temperature T). Radiation en-
tering the cavity from an external source is not included in the analysils
for reasons already discussed in the INTRODUCTION. The surface absorp-
tivity and emissivity relate, respectively, to energy absorption and
emission over the entire wavelength range. The gray-body assumption is
not required, so that « need not be equal to €. The analysis as
given in the following paragraphs can also be carried out on a mono-
chromatic basis.

The starting point of the analysis is a radiant flux balance on a
typical element of surface. The energy leaving the surface element per
unit time and area is equal to the sum of the emitted energy plus the
reflected portion of the incident energy. The leaving energy per time
and area is denoted by B and is called the radiosity; while, the in-
cident energy per unit time and area 1s denoted by H. With these, the
radiant flux balance becomes

B(90,00) = €oT* + (1 - a) H(®g,00) (21)

Z791-&
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where ©,,8, are the coordinates of a particular surface location and

the reflectivity has been replaced by (1 - a). In reference 3, it is
shown that the radiant flux incident at any given point is obtained by
taking the radiant energy leaving another location, multiplying by an
appropriate angle factor, and then Integrating over the entire surface:

H(9,,8,) =4 B(p, 8)dF (22)

Since both the temperature and the angle factor are uniform throughout
the cavity, it is easily seen that the radiosity B will alsoc be in-
dependent of position; therefore,

*
H=38 d.F = BA (23)
A'X' 4JTR2

Introducing equation (23) into (21) and solving for B gives

B €
_ 24
of* 1 - 0.5(1 - a)(1 + cos ¢¥) (24)

in which A" has been evaluated from equation (3).

If the cavity is to be used as a black-body energy source, B/G‘I‘4
1s a measure of its effectiveness. Clearly, it would be desired that
B/oT* approach as closely as possible to unity. If a~ ¢ (gray body),

B/GT4 can be read directly from figure 1. The figure reveals that a
spherical enclosure with & small hole (small @) is a very effective
black bedy. If « % e, figure 1 may still be used, but the values read
from the ordinate must be multiplied by e/&.

The net local heat flux q' per unit area is the difference be-
tween the radiant flux leaving the surface element and the flux that is

incident on it
q' =B - H (25)

Substituting equations (23) and (24) for H and B, respectively, and
rearranging yields

4 0.5 sinZg*/(1 + cos ¢*)

% (26)
1-0.5(1 -a)(l+cos @)

g' = eoT
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Inspection of this equation reveals that q! is uniform over the sur-
face. It is also interesting to note that g represents the rate at
which energy must be locally supplied to the wall of the spherical shell
in order to maintain the isothermal condition.

The overall rate Q' at which radiant energy streams outward from
the opening of the cavity may be calculated by multiplying equation (26)
by A*. A convenient representation of this overall heat-transfer re-
sult may be made in terms of an apparent emissivity eg, defined as
follows:

€ = Q1/Q, (27)

where Q) 1s the radiant energy streaming from a black-walled iso-~

. thermal cavity. The energy loss from a black cavity is precisely equal
to the radiation from a black isothermal disk stretched over the cavity

opening
&y, = oT*nRZsiny" (28)

Then, multiplying equation (26) by A* and dividing by Q,., glves
b

= < = (29)
1-0.5(1 -a)(1+cos@)

€a

Comparison of this result with equation (8) reveals that ¢4 = a, for
a gray-walled cavity. For this condition, €, may be read directly from

figure 1. If o % €, the ordinates are to be multiplied by e/a.

Inspection of figure 1 suggests that the spherical cavity 1s an
attractive configuration for potential application as a source of nearly
black-body radiation.

CONCLUDING REMARKS

The foregolng analysils demonstrated a unique property of the diffuse
spherical cavity, namely, that the absorption and emlssion characteristics
can be represented in terms of simple, closed-form algebralc equations.

In general, for nonspherical configurations, solving integral equations
would be necessary to obtain corresponding information. In almost all
instances, numerical techniques would have to be employed in conjunction
with a digital computer.

29T -
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Because of its simplicity, the local absorption relation (eq. (11))
is in an especially convenient form to serve as Input data for analyses
involving reemission and perhaps energy storage. Considerations re-
lating to energy storage arise in systems that may not be irradiated
continuously and that employ fluids or salt solutions as heat reservoirs.
Although such analyses may involve transient conditions, the applicabil-
ity of equation (11) is not altered.

One situation occurs in which the simultaneous problem of incoming
external radiation and surface emission can be solved by a simple linear
combination of the results for the separate absorption and emission prob-
lems. This 1s the case of the isothermal surface. The net overall heat
loss is given by the difference Q' - Q (Q' 1s overall rate of energy
streaming from cavity and @ 1s overall rate of energy absorption),
while the net local heat loss is found from q' - q (@' is net local
rate of heat loss per unit area and q 1is local rate of energy absorp-
tion per unit area).

Heat Transfer Iaboratory

Department of Mechanical Engineering
University of Minnesota

Minneapolils, Minn.

February 28, 1962
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